(Automatic) target detection in synthetic aperture radar imagery via terrain recognition
نویسندگان
چکیده
Surveillance of large areas of the Earths surface is often undertaken with low resolution synthetic aperture radar (SAR) imagery from either a satellite or a plane. There is a need to process these images with automatic target detection (ATD) algorithms. Typically the targets being searched for are vehicles or small vessels, which occupy only a few resolution cells. Simple thresholding is usually inadequate for detection due to the high amount of noise in the images. Often the background has a discernible texture, and one form of detection is to search for anomalies in the texture caused by the presence of the target pixels. To perform this task a texture model must be able to model a variety of textures at run time, and also model these textures well enough to detect anomalies. We accomplish this with our multiscale nonparametric Markov random field (MRF) texture model.
منابع مشابه
SVM-based Target Recognition from Synthetic Aperture Radar Images using Target Region Outline Descriptors
The work in this paper explores the discriminatory power of target outline description features in conjunction with Support Vector Machine (SVM) based classification committees, when attempting to recognize a variety of targets from Synthetic Aperture Radar (SAR) images. In specific, approximate target outlines are first determined from SAR images via a simple mathematical morphology-based segm...
متن کاملDeep Learning for End-to-End Automatic Target Recognition from Synthetic Aperture Radar Imagery
The standard architecture of synthetic aperture radar (SAR) automatic target recognition (ATR) consists of three stages: detection, discrimination, and classification. In recent years, convolutional neural networks (CNNs) for SAR ATR have been proposed, but most of them classify target classes from a target chip extracted from SAR imagery, as a classification for the third stage of SAR ATR. In ...
متن کاملSpeckle Reduction via Wavelet Shrinkage with Application to SAR based ATD/R
We propose a novel speckle reduction method based on shrinking the wavelet coefficients of the logarithmically transformed image. The method is computational efficient and can significantly reduce the speckle while preserving the resolution of the original image. Wavelet processed imagery is shown to provide better detection performance for synthetic-aperture radar(SAJt) based automatic target ...
متن کاملTarget detection in synthetic aperture radar imagery: a state-of-the-art survey
Target detection is the front-end stage in any automatic target recognition system for synthetic aperture radar (SAR) imagery (SAR-ATR). The efficacy of the detector directly impacts the succeeding stages in the SAR-ATR processing chain. There are numerous methods reported in the literature for implementing the detector. We offer an umbrella under which the various research activities in the fi...
متن کاملImproved Target Recognition and Target Detection Algorithms Using Hrr Profiles and Sar Images
In this thesis, a new algorithm to improve automatic target recognition techniques on High Range Resolution (HRR) Profiles is presented and also a number of ways are investigated for target detection using Synthetic Aperture Radar (SAR) images. A new 1-D hybrid Automatic Target Recognition (ATR) algorithm is developed for sequential High Range Resolution (HRR) radar signatures. The proposed hyb...
متن کامل